Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 2 de 2
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Curr Top Med Chem ; 23(5): 371-388, 2023.
Статья в английский | MEDLINE | ID: covidwho-2295851

Реферат

Iridoids are secondary plant metabolites that are multitarget compounds active against various diseases. Iridoids are structurally classified into iridoid glycosides and non-glycosidic iridoids according to the presence or absence of intramolecular glycosidic bonds; additionally, iridoid glycosides can be further subdivided into carbocyclic iridoids and secoiridoids. These monoterpenoids belong to the cyclopentan[c]-pyran system, which has a wide range of biological activities, including antiviral, anticancer, antiplasmodial, neuroprotective, anti-thrombolytic, antitrypanosomal, antidiabetic, hepatoprotective, anti-oxidant, antihyperlipidemic and anti-inflammatory properties. The basic chemical structure of iridoids in plants (the iridoid ring scaffold) is biosynthesized in plants by the enzyme iridoid synthase using 8-oxogeranial as a substrate. With advances in phytochemical research, many iridoid compounds with novel structure and outstanding activity have been identified in recent years. Biologically active iridoid derivatives have been found in a variety of plant families, including Plantaginaceae, Rubiaceae, Verbenaceae, and Scrophulariaceae. Iridoids have the potential of modulating many biological events in various diseases. This review highlights the multitarget potential of iridoids and includes a compilation of recent publications on the pharmacology of iridoids. Several in vitro and in vivo models used, along with the results, are also included in the paper. This paper's systematic summary was created by searching for relevant iridoid material on websites such as Google Scholar, PubMed, SciFinder Scholar, Science Direct, and others. The compilation will provide the researchers with a thorough understanding of iridoid and its congeners, which will further help in designing a large number of potential compounds with a strong impact on curing various diseases.


Тема - темы
Iridoid Glycosides , Iridoids , Iridoids/pharmacology , Iridoids/chemistry , Iridoids/metabolism , Plants , Plant Extracts/chemistry , Monoterpenes , Antioxidants
2.
J Biomol Struct Dyn ; 40(10): 4532-4542, 2022 07.
Статья в английский | MEDLINE | ID: covidwho-972809

Реферат

The coronavirus disease 2019 (COVID-19) pandemic, caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), presents an unprecedented challenge to global public health with researchers striving to find a possible therapeutic candidate that could limit the spread of the virus. In this context, the present study employed an in silico molecular interaction-based approach to estimate the inhibitory potential of the phytochemicals from ethnomedicinally relevant Indian plants including Justicia adhatoda, Ocimum sanctum and Swertia chirata, with reported antiviral activities against crucial SARS-CoV-2 proteins. SARS-CoV-2 proteins associated with host attachment and viral replication namely, spike protein, main protease enzyme Mpro and RNA-dependent RNA polymerase (RdRp) are promising druggable targets for COVID-19 therapeutic research. Extensive molecular docking of the phytocompounds at the binding pockets of the viral proteins revealed their promising inhibitory potential. Subsequent assessment of physicochemical features and potential toxicity of the compounds followed by robust molecular dynamics simulations and analysis of MM-PBSA energy scoring function revealed anisotine against SARS-CoV-2 spike and Mpro proteins and amarogentin against SARS-CoV-2 RdRp as potential inhibitors. It was interesting to note that these compounds displayed significantly higher binding energy scores against the respective SARS-CoV-2 proteins compared to the relevant drugs that are currently being targeted against them. Present research findings confer scopes to explore further the potential of these compounds in vitro and in vivo towards deployment as efficient SARS-CoV-2 inhibitors and development of novel effective therapeutics.Communicated by Ramaswamy H. Sarma.


Тема - темы
Antiviral Agents , COVID-19 Drug Treatment , Iridoids , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus RNA-Dependent RNA Polymerase/antagonists & inhibitors , Humans , Iridoids/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/antagonists & inhibitors
Критерии поиска